
SB2SL 2
User’s Guide

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

SB2SL User’s Guide

© COPYRIGHT 1998–2011 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
October 1998 Online only Revised for Version 2 (Release 11)
January 1999 Online only Minor revision
September 1999 Online only Minor revision for Release 11.1
September 2000 Online only Minor revision for Release 12
June 2004 Online only Minor revision for Release 14
October 2004 Online only Minor revision for Release 14SP1
September 2005 Online only Minor revision for Release 14SP3
March 2006 Online only Minor revision for Release 2006a+
September 2006 Online only Minor revision for Release 2006b+
March 2007 Online only Minor revision for Release 2007a+
September 2007 Online only Revised for Version 2.7 (Release 2007b+)
March 2008 Online only Revised for Version 2.7.1 (Release 2008a+)
October 2008 Online only Revised for Version 2.7.2 (Release 2008b+)
March 2009 Online only Revised for Version 2.7.3 (Release 2009a+)
September 2009 Online only Revised for Version 2.7.4 (Release 2009b+)
March 2010 Online only Revised for Version 2.7.5 (Release 2010a+)
September 2010 Online only Revised for Version 2.7.6 (Release 2010b+)
April 2011 Online only Revised for Version 2.7.7 (Release 2011a+)

Contents

Converting SystemBuild SuperBlocks to
Simulink Models

1
Introduction . 1-2
What Is SB2SL? . 1-2
Software Requirements . 1-3
Installation . 1-3

Using SB2SL . 1-4
Prerequisites . 1-4
Starting SB2SL . 1-4
Loading a SystemBuild Model into SB2SL 1-5
Selecting SystemBuild SuperBlocks 1-6
Selecting a SuperBlock Partition for Conversion 1-8
Setting Translation Options . 1-8
Converting SuperBlocks to Simulink Models 1-18
Compiling Converted BlockScript . 1-21
Saving Translated Models and Data 1-22
Generating a Report . 1-23

Conversion Strategies . 1-24
Componentization . 1-24
Improving Signal Line Wiring Results 1-26
Silencing Unconnected Port Warnings 1-28
Migrating to a Native Simulink Modeling Style 1-29

Compatibility Between SystemBuild and Simulink
Software . 1-31
Introduction . 1-31
SB2SL Simulink Library . 1-31
Using Simulink® Coder Software with Converted SB2SL
Models . 1-33

Referenced Models in Normal Mode with Converted SB2SL
Models . 1-33

Limitations . 1-34

v

Unsupported Conversions . 1-34
File Formats . 1-35
Blocks Not Converted to Simulink Models 1-35
Suggestions for Handling UserCode Blocks 1-37

Function Reference

2

Index

vi Contents

1

Converting SystemBuild
SuperBlocks to Simulink
Models

• “Introduction” on page 1-2

• “Using SB2SL” on page 1-4

• “Conversion Strategies” on page 1-24

• “Compatibility Between SystemBuild and Simulink Software” on page 1-31

• “Limitations” on page 1-34

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

Introduction

In this section...

“What Is SB2SL?” on page 1-2

“Software Requirements” on page 1-3

“Installation” on page 1-3

What Is SB2SL?
You can translate National Instruments® SystemBuild™ SuperBlocks to
Simulink® models using the SystemBuild to Simulink Translator (SB2SL).
For each SystemBuild SuperBlock in your model, you can:

• Create a Simulink model that represents the structure and hierarchy of
your SystemBuild model.

• Translate National Instruments Xmath® data from the SystemBuild model
into MATLAB® variables in the MATLAB workspace.

• Produce a report providing details of the translation.

SB2SL translation is performed on a block-by-block basis. Except for a few
blocks, all SystemBuild blocks are translated into either:

• Its Simulink counterpart

• A masked subsystem block containing the computational equivalent if no
Simulink counterpart exists

When SB2SL cannot translate a block, it inserts an appropriate blank
placeholder block in the resulting Simulink model.

Once you translate your SystemBuild model into the Simulink environment,
the results of the Simulink simulation match the results of a SystemBuild
simulation. However, due to modeling differences between the two
environments, you might want to perform further model optimizations to
achieve top simulation performance. MathWorks strongly recommends that
you validate all models after translation.

1-2

Introduction

Software Requirements
Version 2.7.7 of SB2SL requires MATLAB Version 7.12 and Simulink Version
7.7. For general system requirements, see the installation documentation.

You can apply SB2SL to SystemBuild files saved from SystemBuild Version
5.0 through Version 6.2 on UNIX® or PC systems in ASCII format. However,
new blocks introduced since SystemBuild Version 6.0 cannot be converted.
For more information, see the list of blocks not converted in “Limitations”
on page 1-34.

Installation
The SB2SL software is available only through Web download. Follow the
installation instructions from the Web download page for the version that
you want to download. For further instructions on how to install the UNIX
version of the SB2SL software, see the installation documentation.

1-3

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

Using SB2SL

In this section...

“Prerequisites” on page 1-4

“Starting SB2SL” on page 1-4

“Loading a SystemBuild Model into SB2SL” on page 1-5

“Selecting SystemBuild SuperBlocks” on page 1-6

“Selecting a SuperBlock Partition for Conversion” on page 1-8

“Setting Translation Options” on page 1-8

“Converting SuperBlocks to Simulink Models” on page 1-18

“Compiling Converted BlockScript” on page 1-21

“Saving Translated Models and Data” on page 1-22

“Generating a Report” on page 1-23

Prerequisites
Before translating a SystemBuild model, you must save it in ASCII format
(usually with a file extension .xmd or .sbd).

To make possible the transfer of parameterized variables (%vars) from SB2SL
software, you must also make sure the variables are declared and resident in
the Xmath workspace. Then save the SystemBuild model with the Xmath
Variables option set to Save All.

Starting SB2SL
To start SB2SL, at the MATLAB command prompt, type:

sb2sl

This opens the main SB2SL graphical user interface (GUI) and an associated
message window.

1-4

Using SB2SL

Main SB2SL GUI and Message Window

Loading a SystemBuild Model into SB2SL
Select File > Open in the SB2SL main GUI to load a SystemBuild model.
This opens a file browser from which you can select a SystemBuild model file.
Once you select the name of a SystemBuild file in the browser, SB2SL:

• Opens the file

1-5

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

• Loads all of the parameters, if any, into the MATLAB workspace

• Lists the names of all the SuperBlocks in your model in a list

You can follow the process with this tutorial by loading the .xmd file,
sbpend.xmd, included with SB2SL.

Main SB2SL GUI and Message Window with sbpend

Hint To locate the directory from which to browse for sbpend.xmd, type which
sbpend.xmd at the MATLAB command prompt.

Selecting SystemBuild SuperBlocks
You can use SB2SL to convert SystemBuild SuperBlocks to Simulink models
at any level in the SystemBuild hierarchy. To begin the process of SuperBlock

1-6

Using SB2SL

conversion, select the name of a top-level SuperBlock you want to convert
from the list in the main SB2SL GUI. This action highlights all SuperBlock
names referenced by the selected SuperBlock.

Alternatively, you can display the SuperBlocks in a tree view by selecting
Window > Tree in the SB2SL main GUI. This opens the Model Tree
Structure window. From this window, you can use your mouse to select the
SuperBlock you want to convert to a Simulink diagram.

If you right-click a SuperBlock icon, a window opens that contains additional
information related to that SuperBlock (for example, type, number of blocks,
etc.).

Model Tree Structure and SuperBlock Information Windows

1-7

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

Selecting a SuperBlock Partition for Conversion
A SystemBuild model can contain data in separate partitions associated
with each SuperBlock. When you load a SystemBuild model into SB2SL, all
associated partitions are loaded into the MATLAB workspace as MATLAB
structures. When you use SB2SL to convert a SuperBlock into a Simulink
model, you must select the partition from which to reference the data for
building the model.

To choose the data partition:

1 Select Build > Partition in the main SB2SL GUI.

This opens the following window:

2 Select the partition you want your Simulink model to use, and click Apply.

Setting Translation Options
Before you convert your SystemBuild model to a Simulink one, you can set
options for:

• Building the Simulink models (“Translation Build Options” on page 1-9)

• Generating reports from the translation (“Report Generation Options”
on page 1-13)

• Converting the reports to various text formats (“Report Formatting
Options” on page 1-15)

1-8

Using SB2SL

• Changing GUI font sizes for the translation option dialog boxes (“Window
Preferences” on page 1-16)

To save translation option settings for reuse in another SB2SL session, click
the Save button.

To reset default option settings, in the MATLAB Command Window, type
the following:

rmpref('SB2SL')

Close and restart SB2SL. The default settings are reapplied.

Translation Build Options
To set the translation build options, select File > Preferences in the main
SB2SL GUI.

1-9

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

The following build options are available:

Option Description

Fit system to
view

Select this check box to scale the model to fit the
window size.

Clear this check box if you want to use the original
block sizes.

Add Terminator
and Ground
blocks

Select this check box to terminate unconnected
block inputs or outputs with Simulink Terminator or
Ground blocks. By default, SB2SL does not terminate
unconnected block inputs or outputs.

1-10

Using SB2SL

Option Description

Route wires
around blocks

Select this check box to minimize crossing blocks with
signal lines in the Simulink model resulting from
SB2SL translation.

Ignore output
posting for
triggered
SuperBlocks

When you select this check box:

• All triggered SystemBuild outputs are posted in “as
soon as finished (SAF)” mode.

• Triggered SuperBlocks assigned to “after timing
requirement (ATR)” and “at next trigger (ANT)”
output posting modes are ignored.

Convert idle
SuperBlocks

If your model contains enabled or triggered
SuperBlocks that are also nested, one or more of these
blocks might never execute. To convert these idle
SuperBlocks, select this check box. By default, SB2SL
does not convert idle SuperBlocks.

Optimize
translated
model

Select this check box to maximize the use of standard
Simulink blocks when translating the following
SystemBuild blocks:

• Data store blocks

• Algebraic/logical expression blocks

• Integrator blocks

Create
SuperBlock
libraries

Select this check box to create Simulink library files
that contain one Subsystem block per library for each
SuperBlock. This option creates Simulink library files
in the current directory. SB2SL creates library links
from the top-level model and subsequently nested
library links. Select this option if you want to use a
component-based modeling approach in the Simulink
environment.

1-11

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

Option Description

Note If you have a library from a previous conversion,
SB2SL will use that library. If you want to convert
a model that reuses names from an earlier model
conversion, you should convert the new model into
an empty directory. Converting this model into the
same directory as the earlier conversion might cause
unexpected links.

Use Simulink
native blocks

Select this check box to convert using native Simulink
blocks. This option allows the Simulink environment
to provide additional optimization and configuration
ability in simulation and code generation. Alternately,
when you select this check box, the dialog selects both
of the following options by default:

• If blocks for Condition block with mode No
Default or With Default

Select this check box to convert the Condition block
using native Simulink if-else blocks and action
subsystems for the Condition blockMode parameter
set to With Default and No Default.

• Logic blocks

Select this check box to convert using native
Simulink logic blocks.

1-12

Using SB2SL

Option Description

Put IDs in
annotations

Select this check box to insert the block ID into
the annotation of subsystem blocks instead of the
block name (the annotation parameter name is
AttributesFormatString). The ID is still visible just
below the block name. This option does not affect the
block ID of SuperBlocks; they always have the block ID
in the subsystem annotation to help componentization.

Note If you want to insert a block ID into the
annotation of a model that was converted in a release
before SB2SL 2.7.2, use the sbid2anno function.

Use round sum
block

Select this check box to use a round summing junction
instead of a square one in the Simulink model. This
change is only visual.

Report Generation Options
You can use report generation options to select the portions of the
SystemBuild data you want to include in a build report. To create a build
report, select the SB2SL Build > Report option. This option saves the
build report in the current directory in a file named xmdfilename.html, for
example, sbpend.html.

To specify the data portion options, click the Report Layout tab in the
Translator Options window.

1-13

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

The following report options are available for inclusion in the build report:

Option Description

Catalog of
SuperBlocks

Select this check box to include a list of the SuperBlocks
in the model.

Detailed
SuperBlock
information

Select this check box to include detailed information about
the SuperBlocks in the model.

Partitions
and
parameters

Select this check box to include the partitions and
parameters in the model.

1-14

Using SB2SL

Option Description

List of
Blockscript
blocks

Select this check box to include a list of the BlockScript
blocks in the model.

List of
unconverted
blocks

Select this check box to include a list of the missing
(unconverted) blocks from the model. If all blocks were
converted, the report indicates that SB2SL has converted
all blocks.

Report Formatting Options
You have the following options for specifying the format of generated reports.
Click the Report Format tab in the Translator Options window to access
these options. Click the Report Format tab in the Translator Options
window to access these options.

1-15

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

Option Description

Format Select the output format:

• Web (HTML)

• Rich Text Format 95 (RTF)

• Rich Text Format 97 (RTF)

• LaTex (TEX)

Stylesheet The choices for this option depend on the setting of Format.

• If Format is Web (HTML), select Single page web or
Multi page web output

• If Format is Rich Text Format 95 (RTF), Rich Text
Format 97 (RTF), or LaTex (TEX), select Standard
print, Simple print, or Large type print.

View
report
after
conversion

Select this check box to display the report after it is created.

Window Preferences
You can use window preferences to customize the look of your SB2SL
windows. Click the Window Preferences tab in the Translator Options
window to access these options.

1-16

Using SB2SL

Under... Do...

Variable
width font

From the drop-down lists, select fonts to change the large,
normal, and small font size of the SB2SL window labels.

Fixed width
font

From the drop-down list, select the font size for fixed-width
displays.

Message
window

In Number of lines, enter the number of display lines.

In Buffer length, enter the number of lines you want to
keep in the message buffer.

1-17

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

Converting SuperBlocks to Simulink Models
Before converting your SuperBlock to a Simulink model, you can set options
for building the model and recording the translation. See “Setting Translation
Options” on page 1-8 for more information.

You are ready to convert your model to a Simulink one after you have:

• Selected the top-level SuperBlock and the partition you want to translate

• Set any desired translation options (see “Setting Translation Options” on
page 1-8)

To begin the translation, click the Convert button on the main SB2SL GUI.
This begins the translation process and the resulting Simulink model is
opened when it is finished. During the translation:

• The progress bar beneath the Convert button on the main SB2SL GUI
slides toward completion.

• The message window displays actions describing the translation.

1-18

Using SB2SL

���������	��
����������
��
���
��������
�������������
�����
���
���������
���������
����������

Simulink® Model for sbpend.xmd

After you convert your model to a Simulink one, some blocks on the Simulink
diagram might be labeled Unconverted. See “Blocks Not Converted to
Simulink Models” on page 1-35 and “Suggestions for Handling Unconverted
Blocks” on page 1-36 for information about unconverted blocks.

Default Conversion Results
SB2SL performs the following during a default conversion:

• Creates a top-level model with nondefault model-level parameter settings

• Converts SystemBuild SuperBlocks to Simulink atomic subsystems

1-19

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

SB2SL creates a top-level model with the following nondefault model-level
parameter settings:

Configuration
Parameter

Value Command–Line
Parameter

Value

Optimization pane:
Inline parameters

On 'InlineParams' 'on'

Solver pane: Type Variable-step 'SolverType' 'Variable-step'

Solver pane:
Solver

ode45 'SolverName' 'ode45'

Connectivity tab:
Mux blocks used
to create bus
signals

none 'StrictBusMsg' 'ErrorLevel1'

Diagnostics pane:
Data Validity:
Signal resolution

Explicity only 'SignalResolution-
Control'

'UseLocalSettings'

Model Referencing
pane: Rebuild
options

If any changes
in known
dependencies
detected

'UpdateModelReference-
Targets'

'IfOutOf-Date'

Noncontinuous SuperBlocks (discrete, procedural, and triggered) correspond
most closely to atomic subsystems in the Simulink environment because
atomic subsystems are a semantically closer match to SuperBlocks. SB2SL
creates atomic subsystems with the following additional Atomic Subsystem
block parameter settings to improve readability, componentization potential,
and scalability.

Atomic Subsystem
Block Parameters

Value Command Line
Parameter

Value

Show port labels SignalName 'ShowPortLabels' 'SignalName'

Treat as atomic unit On 'TreatAsAtomicUnit' 'on'

Function packaging Function 'RTWSystemCode' 'Function'

1-20

Using SB2SL

For continuous SuperBlocks, SB2SL creates atomic subsystems with the
following parameters:

Atomic Subsystem
Block Parameters

Value Command Line
Parameter

Value

Show port labels SignalName 'ShowPortLabels' 'SignalName'

Treat as atomic unit Off 'TreatAsAtomicUnit' 'off'

Function packaging Function 'RTWSystemCode' 'Function'

SB2SL also enters the block ID string in the Atomic Subsystem block property
SB2SL Block Annotation tab.

Atomic Subsystem
Block Properties

Value Command-Line
Parameter

Value

Block Annotation Block ID string 'AttributesFormat-
String'

Block ID string

Alternatively, if the subsystem is atomic and the subsystem contents meet
the criteria for model reference (see “Referencing a Model” in Simulink
User’s Guide), you can convert the subsystem to a referenced model. See the
Converting Subsystems to Model Reference demo for an example of this.

Note By default, SB2SL does not create Simulink library files with one
Subsystem block per library for each SuperBlock. If you want to transition to
component-based modeling in the Simulink environment, set the SB2SL main
GUI Build > Option Create SuperBlock libraries option (see “Translation
Build Options” on page 1-9). This option enables your SystemBuild conversion
to create Simulink library files with one Subsystem block per library for each
SuperBlock. This option can help you transition to component-based modeling
in the Simulink environment.

Compiling Converted BlockScript
When you convert using SB2SL, SB2SL converts SystemBuild BlockScript
blocks into C code and places them into Simulink S-functions automatically.
Select Build > Compile in the main SB2SL GUI to open the Source Files

1-21

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

window. This window lists the S-functions generated by the translated
SystemBuild BlockScript blocks.

From the Source Files window:

1 Select the files you want to compile.

2 Click the Compile button, and the MATLAB standard mex command
compiles these C code S-functions.

For more information on the MATLAB MEX-file capability and Simulink
S-functions, see the MATLAB External Interfaces or the Developing
S-Functions documentation.

Saving Translated Models and Data
Once the translation is complete, select File > Save in the main SB2SL GUI
to save either your model or your data:

• Select Save > Model to save the Simulink model to a file so that it can be
reloaded directly from the MATLAB and Simulink environment.

• Select Save > Data to save the model data read from the SystemBuild
file during the translation.

1-22

Using SB2SL

Note You can set the PreLoadFcn callback on the Simulink block diagram
to reload the model data file the next time the Simulink model is opened.
See “Using Callback Functions” in Simulink User’s Guide for details on
model callbacks.

Generating a Report
You can generate a report recording the details of your translation after you
convert a model with SB2SL. There are several report options you might
want to set beforehand. See “Report Generation Options” on page 1-13 for
information on these options.

To generate a report with the default option settings, select Build > Report
after converting your model.

1-23

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

Conversion Strategies

In this section...

“Componentization” on page 1-24

“Improving Signal Line Wiring Results” on page 1-26

“Silencing Unconnected Port Warnings” on page 1-28

“Migrating to a Native Simulink Modeling Style” on page 1-29

Componentization
Converting SystemBuild models to Simulink models enables you to simulate
sections of the overall model. It also allows you to more easily run existing
SystemBuild level tests and confirm the validity of the conversion. You can
componentize your converted SystemBuild model using library link and
model reference conversion capabilities. If you are creating multiple models
during the conversion process, either through multiple conversion invocation
or subsequent conversions of atomic subsystems into model references, having
a single configuration set object (see “Referencing Configuration Sets”) with
your desired configurations for all models can simplify conversions.

The benefits of componentization of your SystemBuild model include:

• Ability to convert your SystemBuild model using library links and model
reference

Converting components to be referenced models instead of library links
permits simplified testing. Because a referenced model is simply a model
that can be simulated, component tests can be brought to the MATLAB or
Simulink environment in a straightforward manner.

• Visually cleaning up the resulting model and addressing any issues with
unconverted blocks

• Testing the converted models using existing SuperBlock level tests

The next step is to get the new model to simulate with the same results
as the original model. This step might involve changing solver settings
and zero-crossing controls for models with continuous states employing
variable-step solvers.

1-24

Conversion Strategies

SB2SL creates one top-level model per conversion. By default, it configures
the converted model to work with the Simulink Model block to allow for the
creation of a model reference component in another model or library.

If you do not want to use referenced models but do want to use design
components, convert the top-level model into an atomic subsystem:

1 Open a new or existing library.

2 Drag an Atomic Subsystem block into that library.

3 In the Simulink model editor window of the top-level model, select
Edit > Select all.

4 In the Simulink model editor window of the top-level model, select
Edit > Copy.

5 In the new or existing library, double-click the Atomic Subsystem block.

The subsystem is displayed.

6 In the Simulink model editor of the Atomic Subsystem block, select
Edit > Paste.

The contents of the top-level model are now in the Atomic Subsystem block.

7 Close the Atomic Subsystem block.

8 Save and close the top-level model and library.

Unconverted SuperBlocks
If the SystemBuild model contains a SuperBlock that SB2SL cannot convert
(for example, an external SuperBlock that is referenced by the SystemBuild
model), you can still create a link to that unconverted block by doing one
of the following:

• Replace the empty subsystem that is in place for the unconverted block
with a Simulink Model block to create a link:

1 Assuming that model A has an unconverted external SuperBlock, find
the file that contains the unconverted SuperBlock (for example, file B).

1-25

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

2 Using SB2SL, translate the file that contains the unconverted
SuperBlock (for example, file B) to a Simulink model.

3 Leave file B as its own model, model B.

4 Drag a Model block into model A to reference model B.

• Copy a translated model into a Subsystem block in a library:

1 Assuming that model A has an unconverted external SuperBlock, find
the file that contains the unconverted SuperBlock (for example, file B).

2 Using SB2SL, translate the file that contains the unconverted
SuperBlock (for example, file B) to the Simulink model.

3 Open a new or existing library.

4 Drag an Atomic Subsystem block into this library.

5 Copy and paste the contents of model B into the new Atomic Subsystem
block and save the library.

6 Drag a copy of the new Atomic Subsystem block into A.

Improving Signal Line Wiring Results
When SB2SL converts a SystemBuild model into a corresponding Simulink
model, it connects the blocks as best as it can. If you are dissatisfied with
these results, you can improve the wiring results of the signal lines by:

• Manually cleaning up the wiring using the tips in “Wiring Cleanup Tips”
on page 1-26

• Converting block and system interfaces to native Simulink modeling styles:
vectorization, matrix signals, and buses using the guidelines in “Migrating
to a Native Simulink Modeling Style” on page 1-29

Wiring Cleanup Tips
The following guidelines describe how you can visually clean a Simulink
model that results from a SystemBuild model translation:

1-26

Conversion Strategies

Modeling Pattern In the Simulink Model Editor...

Multiple lines in parallel going to
multiple destinations can cause
visually undesired wiring in your
model. The use of Mux and Demux
blocks can cause these issues.

Perform one or all of the following:

• Route a single line to a copy of the Demux block next to
the destination. This line enables one wire to be used
for the majority of the routing instead of multiple wires.

• Rotate and resize blocks and connectors.

• Select the Mux or Demux block and use the
Format > Flip Block command to rotate the block
180 degrees to change the wiring visually.

Excessively autorouted lines can
cause visually undesired wiring.

Perform one or all of the following:

• Turn off autorouted lines in the SB2SL GUI
(Build > Options, click Build tab, and clear the
Route wires around blocks check box).

• Resize Mux and Demux blocks to line up their
corresponding ports. This alignment helps remove
diagonal wiring.

The following example shows the appearance of the sbpend model when you
turn off autorouted lines.

The following example shows the appearance of the sbpend model when you
turn on autorouted lines.

1-27

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

Use the Format menu commands on the Simulink model editor for basic
graphical cleanup of a model, such as block mass alignments and relative
alignments.

Silencing Unconnected Port Warnings
After conversion, SB2SL might generate a model with unconnected blocks. By
default, unconnected blocks cause warnings each time you update the model
diagram. To avoid these warnings, use one of the following:

• Before conversion, enable the addition of Terminator and Ground blocks
in the SB2SL GUI (Build > Options, click Build tab, and select the Add
Terminator and Ground blocks check box).

• After conversion, use the addterms function to add terminators to the
unconnected ports in the model.

If you do not want the unconnected lines to be terminated, and you do not
want to display the warnings in your MATLAB Command Window, you can
suppress these messages with the following:

1 Before conversion, disable the addition of Terminator and Ground blocks
in the SB2SL GUI (Build > Options, click Build tab, and clear the Add
Terminator and Ground blocks check box).

2 In the MATLAB Command Window, type the following:

warning('off','Simulink:Engine:InputNotConnected')
warning('off','Simulink:Engine:OutputNotConnected')

1-28

Conversion Strategies

3 When you want to reenable the warnings, type the following:

warning('on','Simulink:Engine:InputNotConnected')
warning('on','Simulink:Engine:OutputNotConnected')

These commands are session-wide commands that affect all Simulink models
until you exit the MATLAB environment or change the warning settings.

Migrating to a Native Simulink Modeling Style
Once you have a functioning baseline model, consider the following guidelines
to take advantage of the Simulink software capabilities. There are no
SystemBuild correlations.

• To reduce wiring clutter and simplify interfaces:

- Use the Simulink single-wire vector and matrix support. The
SystemBuild software uses row-major 2-D matrices in some cases,
whereas the Simulink software uses column-major arrays for all matrix
dimensions. This means that to translate some 2-D calculations, you
might need to account for a design transpose from time to time (an
actual transpose block is not needed because the entire algorithm is
transposed).

- Create single-wire bundles using the Bus Creator and Bus Selector
blocks. The SystemBuild software has a graphical wire bundling
capability. However, you use this only for visual presentation; you do not
use it to define interfaces or semantic operations. Simulink bus signals
are more like real signals; they can:

• Feed into nonarithmetic operator blocks such as Inport, Outport,
Switch, and so on.

• Have nested hierarchies (buses within buses).

In addition, you can:

• Create bus objects in the MATLAB workspace to define and enforce
interfaces.

• Use the bus editor to graphically edit bus objects.

See “Using Composite Signals” in Simulink User’s Guide for further
information.

1-29

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

• Instead of the SystemBuild logical concept (positive, negative), use the
Simulink Boolean data type (false, true). To create native Simulink models
with full efficiency and diagnostic capability, consider moving from the
SB2SL logical blocks to the Simulink native logic blocks. In the converted
model, consider replacing the LOG sublibrary NOT block with its Simulink
equivalent (Logical Operator block with Operator parameter set to NOT).

• The SystemBuild Algebraic Expression block supports inlined and
production code generation, but it does not currently support some of the
Simulink® Coder™ code generation optimizations. Consider replacing the
SystemBuild Algebraic Expression block with the MATLAB Function block
to improve production code generation (see “Using the MATLAB Function
Block” in Simulink User’s Guide.

1-30

Compatibility Between SystemBuild™ and Simulink® Software

Compatibility Between SystemBuild and Simulink
Software

In this section...

“Introduction” on page 1-31

“SB2SL Simulink Library” on page 1-31

“Using Simulink® Coder Software with Converted SB2SL Models” on page
1-33

“Referenced Models in Normal Mode with Converted SB2SL Models” on
page 1-33

Introduction
SB2SL performs a block-by-block translation of the SystemBuild model. For
SystemBuild blocks for which a clear Simulink equivalent exists, SB2SL
places the equivalent built-in Simulink block into the resulting Simulink
model. The Gain block is an example in which there is a clear equivalent
between SystemBuild and Simulink blocks.

Other SystemBuild blocks have no clear Simulink equivalents. However,
through the use of Simulink masking and library features, equivalent
implementations of these blocks have been created and are in a Simulink
library called libsb2sl.mdl.

An example of this type of block is the Ramp block in the SystemBuild SNG
library. This block supports limits on the output and a relative start time for
the ramp. The standard Simulink Ramp block does not inherently support
these features. SB2SL translates this block into a masked subsystem that
includes a collection of existing Simulink blocks. This masked subsystem
behaves the same as the SystemBuild Ramp block.

SB2SL Simulink Library
You can find all of the masked blocks generated by SB2SL that are not in any
of the other Simulink libraries in the library libsb2sl.mdl. This library is
provided as part of the Simulink environment. (You need to download and
install the SB2SL software only if you want to use the SB2SL tool to convert

1-31

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

SystemBuild models.) You can open the library at the MATLAB command
line by typing:

libsb2sl

After SB2SL translation, some blocks that appear in the resulting Simulink
model may be from this library.

Open any mask of the Simulink blocks in this library to see the exact
implementation of each SystemBuild equivalent used by SB2SL. For example,
the Simulink equivalent to the SystemBuild Ramp block is in

libsb2sl/SGN/LimRamp

For these blocks:

1VarPoly
ConditionBlock
DAxisRotation
Decoder
Encoder
IAxisRotation
LogExpression

1-32

Compatibility Between SystemBuild™ and Simulink® Software

ZILogExpression
General
General0

the following equivalents are enabled:

• Code reuse

• Variable-step solvers in referenced models

• Improved performance with accelerated models

• Simulink Normal mode for model reference

Using Simulink Coder Software with Converted
SB2SL Models
You can use the Simulink Coder software to generate code for models you
have converted from the SystemBuild to the Simulink environment (using
SB2SL). Code is generated for most translated blocks in the model. Code
generation is also supported for converted models that contain noninlined
BlockScript blocks.

The blocks that do not support code generation through the Simulink Coder
software are:

• GainScheduler

• Interp Table (Archive library)

• ShiftRegister

Referenced Models in Normal Mode with Converted
SB2SL Models
You can use converted SB2SL models in referenced models and execute those
models in Simulink Normal mode. Normal mode is one of two modes in which
Simulink software can execute a referenced model. See “About Referenced
Model Simulation Modes” in Simulink User’s Guide for further details.

1-33

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

Limitations

In this section...

“Unsupported Conversions” on page 1-34

“File Formats” on page 1-35

“Blocks Not Converted to Simulink Models” on page 1-35

“Suggestions for Handling UserCode Blocks” on page 1-37

Unsupported Conversions
No translator can completely convert an optimally designed SystemBuild
model into an optimally designed Simulink model. There are subtle
differences in the way that the two models work that prevent faithful
translation of all capabilities. However, this tool does the job of converting
basic blocks and hierarchy from one tool to the other in a form that can be
simulated. The following are limitations of SB2SL:

• Does not translate binary SystemBuild files.

• Only double data types are supported. Other data types are not supported.

• Write to Variable and Read from Variable blocks do not support the
element- or bit-addressing option.

• The SystemBuild simulation parameter cdelay is not supported.

• The timing of triggered subsystems with the “as soon as finished” output
posting requirement differs from the SystemBuild implementation:

- SystemBuild updates the outputs at the beginning of the next minor
numerical integration step.

- In the Simulink environment, the outputs are available immediately.

• Simulink models obtained from SB2SL conversions of SuperBlocks
containing any triggered SuperBlocks with both of the following attributes
will not run:

- The output posting is selected as “at timing requirement.”

- The triggered SuperBlock is nested within another triggered SuperBlock.

1-34

Limitations

• BlockScripts with scalar parameters cannot generate embedded real-time
(ERT) target code.

• BlockScripts cannot be used in referenced models.

File Formats
SB2SL cannot read SystemBuild files stored in the binary file format.

Blocks Not Converted to Simulink Models
SB2SL converts the following SystemBuild blocks into empty placeholder
blocks in Simulink models. You may want to replace these with various
Simulink blocks you have developed that are equivalent.

• State transition diagrams

• MathScript blocks

• UserCode blocks (see “Suggestions for Handling UserCode Blocks” on page
1-37 for a workaround)

• Interactive Animation blocks

• Any new blocks introduced since SystemBuild Version 6.0

These blocks are converted into blocks labeled Unconverted. To view a
complete listing of the blocks not translated, select Build > Unconverted
Blocks from the SB2SL GUI.

1-35

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

Suggestions for Handling Unconverted Blocks
You can implement all of the SystemBuild operations represented by
the unconverted blocks on your Simulink diagram using the MATLAB
software, Simulink, and, in some cases, other related products. Here are
some suggestions for replacing the unconverted blocks with ones usable for
simulation with the Simulink environment:

• You can replace MathScript blocks with Interpreted MATLAB Function
or MATLAB Function blocks. MATLAB® Coder™ is used to run MATLAB
files. You must write your own files to execute the equivalent MathScript.

• You can replace UserCode blocks with S-Function blocks. These are blocks
you can use to run C code or Fortran.

• You can use a variety of blocks in the Simulink Sinks library to replace
Interactive Animation blocks, depending on the function of that block.
For a greater variety of animated blocks, see the Gauges Blockset™
documentation.

• You can replace state transition diagrams with Stateflow® charts. This
requires you to purchase Stateflow in addition to MATLAB and Simulink
software.

To replace an unconverted block in your Simulink model with the correct
Simulink block:

1 Open an unconverted block in the Simulink model by double-clicking it.

This opens a window listing the SystemBuild component that caused the
unconverted block to be created.

2 Either:

• Delete the unconverted block and copy an appropriate standard Simulink
block into its place.

• Use the Simulink function replace_block to replace the unconverted
block in the Simulink model.

1-36

Limitations

Suggestions for Handling UserCode Blocks
SB2SL does not directly convert UserCode blocks to Simulink blocks. As
a workaround, you can manually convert the UserCode block contents to
equivalent Simulink S-function methods and SimStruct functions.

You should have the following background:

• Good C programming skills

• Good understanding of SystemBuild UserCode blocks

The Simulink Developing S-Functions guide provides information that you
can refer to when converting these blocks.

See... For...

“How S-Functions Work” General information on how
S-functions work.

“Writing S-Functions in C” General information on writing C
S-functions.

“Templates for C S-Functions” Descriptions of the available C MEX
S-function templates, the minimum
required S-function methods, and
the S-function data types.

“S-Function Callback Methods —
Alphabetical List”

Reference of S-function callback
methods.

“About DWork Vectors” Description of DWork vectors that
you can use to allocate blocks of
memory from within S-functions.

This topic describes how to create custom Simulink S-function files. The action
you choose depends on whether or not your UserCode block code is simple.
Simple UserCode block code has only INIT, STATE, OUTPUT, and/or LASTmodes:

• If your UserCode block code is simple, consider using the S-Function
Builder block to create an S-function. See “Using the S-Function Builder
Block to Convert Simple UserCode Block Code” on page 1-38.

1-37

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

• If your UserCode block is more complex, consider manually converting your
code to an S-function. See “Manually Converting More Complex UserCode
Block Code” on page 1-38. If a UserCode block has MONIT, EVENT, and/or
LIN modes, it is more complex.

• If your UserCode block contains Fortran code, see “Converting UserCode
Block Fortran Code” on page 1-40.

Using the S-Function Builder Block to Convert Simple UserCode
Block Code
Before you start, see “Building S-Functions Automatically” in the Developing
S-Functions guide. That topic describes how to use the S-Function Builder
block to create an S-function.

The S-Function Builder block supports the following S-function methods:

• mdlInitializeConditions

• mdlInitializeSampleTimes

• mdlInitializeSizes

• mdlCheckParameters

• mdlProcessParameters

• mdlDerivatives (continuous states)

• mdlUpdate (discrete states)

• mdlOutputs

• mdlTerminate

The S-Function Builder block has a GUI that guides you in the generation
of an S-function. To use it, copy the argument information code from your
simple UserCode block into the S-Function Builder block dialog box.

Manually Converting More Complex UserCode Block Code
To convert UserCode block code using existing C MEX S-function templates:

1 In the SystemBuild model, open the UserCode block to access the code
contents.

1-38

Limitations

2 From the available templates, copy the most appropriate C MEX S-function
template to your working directory:

• sfuntmpl_basic.c

• sfuntmpl_doc.c

3 Rename your template copy with a unique name. This renamed file is
your C MEX S-function file.

4 Open the UserCode block code file and your C MEX S-function file.

5 Copy the contents of the mapping modes in the UserCode block code file to
the corresponding S-function method in the C MEX S-function file. Use the
following mapping table as a guide. Modify the C code to ensure that it has
the correct syntax in the S-function.

UserCode Block Mode S-Function Method

INIT mdlInitializeConditions

mdlInitializeSampleTimes

mdlInitializeSizes

mdlCheckParameters

mdlProcessParameters

mdlStart

STATE mdlDerivatives (continuous states)

mdlUpdate (discrete states)

OUTPUT mdlOutputs

MONIT mdlGetTimeOfNextVarHit

EVENT mdlZeroCrossings

LIN mdlProjection

LAST mdlTerminate

6 Using the following mapping table, reimplement the number of inputs,
outputs, and states in the S-function method, mdlInitializeSizes. Use
the corresponding SimStruct function.

1-39

1 Converting SystemBuild™ SuperBlocks to Simulink® Models

Arguments S-Function Method

NU ssSetNumInputPorts

NX ssSetNumContStates (continuous states)

ssSetNumDiscStates (discrete states)

NY ssSetNumOutputPorts

7 Save your file.

Converting UserCode Block Fortran Code
If your UserCode block code contains Fortran code, see “Creating Level-2
Fortran S-Functions” in the Developing S-Functions guide. That topic
provides guidelines on how you can create an S-function to interact with your
Fortran code.

1-40

2

Function Reference

sbid2anno

Purpose Convert block names with ID to traditional names

Syntax sbid2anno('sys')
sbid2anno('sys','ShowIdString','off')
sbid2anno('sys','ShowIdString','on','ReplaceDepth',inf)

Description For the blocks and subsystems in the top level of sys, sbid2anno('sys')
moves the appended SuperBlock IDs from the block names to the block
annotation fields. It uses the following guidelines:

• The function assigns canonical, unique, hidden names to blocks with
no name before the SuperBlock ID.

• The function assigns canonical, unique, numeric suffixes to blocks
with appended SuperBlock IDs that make them unique.

• The function ignores blocks with no appended SuperBlock IDs.

sbid2anno('sys','ShowIdString','off') performs the same
function as sbid2anno('sys'), but does not set the block annotation in
the block property, AttributesFormatString.

sbid2anno('sys','ShowIdString','on','ReplaceDepth',inf)
performs the same function as sbid2anno('sys'), but does not set
the block annotation in the block property, AttributesFormatString.
This function also replaces all block names with appended SuperBlock
IDs in the model, regardless of the number of nested system levels. If
the value ReplaceDepth is invalid (nonnumeric), this function ignores
the value and uses 1.

Examples This example assumes a previously translated SuperBlock, FltLevel. It
converts all blocks and subsystems with appended SuperBlock IDs at
the root level of FltLevel.

open_system('FltLevel')
sbid2anno('FltLevel')

2-2

Index

IndexB
BlockScript

compiling 1-21
converting 1-21
limitations 1-34

Build menu
Compile 1-21
Partition 1-8
Unconverted blocks 1-35

build options 1-9

C
compatibility 1-31
compiling BlockScript 1-21
componentization 1-24
conversions

default results 1-19
strategies 1-24

converting
blocks not converted 1-35
BlockScript 1-21
models to Simulink 1-18
SuperBlocks 1-35

F
file manager 1-6
format

model requirements 1-35
SystemBuild models 1-4

formatting
reports 1-15

G
generating

models 1-18
reports 1-23

I
installation 1-3

L
library 1-31
limitations 1-34
loading a model 1-5

M
main GUI 1-4
model tree structure 1-6
modeling styles

native Simulink 1-29
models

format 1-35
generating 1-18
loading 1-5
saving 1-22

O
opening SB2SL 1-4
options

build 1-9
reports

formatting 1-15
generating 1-13

translation 1-9

P
partitions

selecting 1-8

R
referenced models

Normal mode 1-33
replace_block 1-36

Index-1

Index

reports
formatting 1-15
generating 1-23
options 1-13
specifying 1-15

requirements 1-3

S
saving

model data 1-22
Simulink models 1-22

SB2SL
blocks not converted 1-36
compatibility with SystemBuild 1-31
conversion 1-18
installation 1-3
limitations 1-4
main GUI 1-4
models, loading 1-5
opening 1-4
requirements 1-3
Simulink library 1-31
Windows menu, tree 1-6

SB2SL translation 1-18
selecting

partitions 1-8
SuperBlocks 1-6

Simulink library 1-31
Simulink models

options 1-9
saving 1-22

Simulink Normal mode 1-33
Source Files window 1-21
specifying reports 1-15
SuperBlocks

conversion 1-18
file manager 1-6
partitions, selecting 1-8
selecting 1-6
translation 1-18
tree structure 1-6

SystemBuild models
format 1-4

T
translation

options 1-9
SuperBlocks, of 1-18

W
Windows menu

tree 1-6

Index-2

	toc
	Converting SystemBuild SuperBlocks to Simulink Models
	Introduction
	What Is SB2SL?
	Software Requirements
	Installation

	Using SB2SL
	Prerequisites
	Starting SB2SL
	Loading a SystemBuild Model into SB2SL
	Selecting SystemBuild SuperBlocks
	Selecting a SuperBlock Partition for Conversion
	Setting Translation Options
	Translation Build Options
	Report Generation Options
	Report Formatting Options
	Window Preferences

	Converting SuperBlocks to Simulink Models
	Default Conversion Results

	Compiling Converted BlockScript
	Saving Translated Models and Data
	Generating a Report

	Conversion Strategies
	Componentization
	Unconverted SuperBlocks

	Improving Signal Line Wiring Results
	Wiring Cleanup Tips

	Silencing Unconnected Port Warnings
	Migrating to a Native Simulink Modeling Style

	Compatibility Between SystemBuild and Simulink Software
	Introduction
	SB2SL Simulink Library
	Using Simulink Coder Software with Converted SB2SL Models
	Referenced Models in Normal Mode with Converted SB2SL Models

	Limitations
	Unsupported Conversions
	File Formats
	Blocks Not Converted to Simulink Models
	Suggestions for Handling Unconverted Blocks

	Suggestions for Handling UserCode Blocks
	Using the S-Function Builder Block to Convert Simple UserCode Bl
	Manually Converting More Complex UserCode Block Code
	Converting UserCode Block Fortran Code

	Function Reference
	Index

